Mining Efficient Fuzzy Bio-Statistical Rules for Association of Sandalwood in Pachaimalai Hills
نویسندگان
چکیده
The integration of association rules and correlation rules with fuzzy logic can produce more abstract and flexible patterns for many real life problems, since many quantitative features in real world, especially surveying the frequency of plant association in any region is fuzzy in nature. This paper presents a modification of a previously reported algorithm for mining fuzzy association and correlation rules, defines the concept of fuzzy partial and semi-partial correlation rule mining, and presents an original algorithm for mining fuzzy data based on correlation rule mining. It adds a regression model to the procedure for mining fuzzy correlation rules in order to predict one data instance from contributing more than others. It also utilizes statistical analysis for the data and the experimental results show a very high utility of fuzzy association rules and fuzzy correlation rule mining in modeling plant association problems. The newly proposed algorithm is utilized for seeking close associations and relationships between a group of plant species clustering around Sandalwood in Pachaimalai hills, Eastern Ghats, Tamilnadu. Mining Efficient Fuzzy Bio-Statistical Rules for Association of Sandalwood in Pachaimalai Hills
منابع مشابه
Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملDeveloping a Course Recommender by Combining Clustering and Fuzzy Association Rules
Each semester, students go through the process of selecting appropriate courses. It is difficult to find information about each course and ultimately make decisions. The objective of this paper is to design a course recommender model which takes student characteristics into account to recommend appropriate courses. The model uses clustering to identify students with similar interests and skills...
متن کاملA new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining
Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...
متن کاملIdentifying and Evaluating Effective Factors in Green Supplier Selection using Association Rules Analysis
Nowadays companies measure suppliers on the basis of a variety of factors and criteria that affect the supplier's selection issue. This paper intended to identify the key effective criteria for selection of green suppliers through an efficient algorithm callediterative process mining or i-PM. Green data were collected first by reviewing the previous studies to identify various environmental cri...
متن کاملPredicting Ocean Salinity and Temperature Variations Using Data Mining and Fuzzy Inference
Global ocean salinity/temperature variations are attracting increasing attention, due to their influence on ocean-atmospheric changes and their potential for improved climate forecasting. The goal is to analyze historic salinity/temperature data to make predictions about future variations. Traditional statistical models that assume data independence are not applicable as ocean data are often in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJAEIS
دوره 6 شماره
صفحات -
تاریخ انتشار 2015